AI Papers


ML Journals

Object Detection

Data Quality

Data Collection and Quality Challenges for Deep Learning

  • video
  • slides Papers from KAIST AI Data Collection and Quality Challenges for Deep Learning (VLDB 2020 Tutorial) by Steven Euijong Whang (KAIST AI) and Jae-Gil Lee

Abstract: Software 2.0 refers to the fundamental shift in software engineering where using machine learning becomes the new norm in software with the availability of big data and computing infrastructure. As a result, many software engineering practices need to be rethought from scratch where data becomes a first-class citizen, on par with code. It is well known that 80-90% of the time for machine learning development is spent on data preparation. Also, even the best machine learning algorithms cannot perform well without good data or at least handling biased and dirty data during model training. In this tutorial, we focus on data collection and quality challenges that frequently occur in deep learning applications. Compared to traditional machine learning, there is less need for feature engineering, but more need for significant amounts of data. We thus go through state-of-the-art data collection techniques for machine learning. Then, we cover data validation and cleaning techniques for improving data quality. Even if the data is still problematic, hope is not lost, and we cover fair and robust training techniques for handling data bias and errors. We believe that the data management community is well poised to lead the research in these directions. The presenters have extensive experience in developing machine learning platforms and publishing papers in top-tier database, data mining, and machine learning venues.

Data for Good









© 2020. by Changsin

Powered by changsin